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THEORETICAL INVESTIGATION OF FLUTTER OF TWO-DIMENSIONAL FLAT PANELS WITH
ONE SURFACE EXPOSED TO SUPERSONIC POTENTIAL FLOW !

By HerseBrT C. NELSON and HBRBERT J. CUNNINGHAM

SUMMARY

A Rayleigh type analysis involving chosen modes of the
panel as degrees of freedom 18 used to treat the fluiter of a two-
dimensional flat panel supported at s leading and trailing
edges and subjected to a middle-plane tensile force. The
panel has a supersonic stream passing over ils upper surface
and still air below. The aerodynamic forces due to the super-
sonic stream are obtained from the theory for linearized
two-dimensional unsteady flow and the forces due to the still
air are oblained from acoustical theory.

In order to study the effect of increasing the number of modes
in the analysis, two and then four modes are employed. The
modes used are the first four natural modes of the panel in a
vacuum with no tensile force acting. The analysis includes
these variables: Mach number, structural damping, tensile
Jorce, density of the still air, and edge fizity (clamped and
pinned). For certain combinations of these variables, stability
boundaries are obtained which can be used to determine the
panel thickness required to prevent flutter for any panel material
and altitude.

In contrast to some previous panel-flutter investigations,
the results of the present analysis show that sufficiently thick
panels are flutter free for the Mach numbers treated and suggest
that this is true throughout the supersonic speed range.

A comparison of results from the present theory for flat
panels and from @ criterion developed by R. P. Isaacs for the
static stability of buckled panels is made with a few experimental
results on flat and buckled panels clamped at leading and
trailing edges.

INTRODUCTION

The flutter of thin metal plates or panels, such as com-
pose the covering or skin of missiles and other craft intended
for high-speed flight, has recently become of increased con-
cern. Such panels may be initially flat or curved and may
be small or fairly large in aspect ratio. In addition, they
may be prestressed and will probably become warped in
flight by aerodynamic heating. If one or more of the
pancls on a particular configuration are vibrating, the
basic structure supporting them can usually be considered
rigid. The fixity at the edges of the panels ranges between
clamped and pinned, depending on the construction. Some
preliminary experimentation and analytical work suggests
that this type of instability is of concern only at supersonic
speeds,

The problem of panel flutter embraces so many possible
factors as to discourage general treatment, and previous
papers on the subject (for example, refs. 1 to 7) have em-
ployed various simplifying assumptions in order to obtain
specific solutions to what might perhaps be considered
different phases of the problem. In all the references cited,
the main assumption made is that a panel and the flow over
it are two-dimensional. Other assumptions common to
the reference papers are that small-deflection plate theory
and linearized flow theory may be used.

References 1 to 4 examine the case of a panel buckled by a
constant shortening and held at its leading and trailing edges,
with a supersonic stream over its upper surface and no per-
turbation pressures on its lower surface. In reference 1
steady-state air forces and in reference 2 quasi-stationary air
forces, which include the first order of the frequency of oscil-
lation, are used. Both these references consider the dynamic
stability of the buckled panel. Reference 3 and the more ex-
baustive reference 4 examine the static stability of the
buckled panel and propose that motion (flutter) is the result
when static equilibrium is not possible. Reference 5 and a
section of reference 2 treat the case of a flat panel pinned at
its leading and trailing edges. Reference 5 uses exact linear-
ized unsteady aerodynamic forces and therefore, in contrast
to reference 2, imposes no limitations on the order of the fre-
quency. In references 1, 2, and 5 a generalized-coordinate
approach involving chosen modes of the panel as degrees of
freedom is employed. Reference 6, on the other hand, indi-
cates how the problem of a vibrating membrane in a super-
sonic stream can be treated by means of Laplace transforms
and suggests that similar treatment can be given to the plate
problem. Reference 7 treats the case of a two-dimensional
panel on many equally spaced simple supports with compres-
sible air flowing over the upper surface and dead air below
the panel, and the results indicate that the possible panel
instabilities are divergence for subsonic flow and flutter for
supersonic flow. Some questionable features of the results
obtained in references 2, 5, and 7 are examined in the section
entitled ‘“Results and Discussion” in the present report.

A Rayleigh type flutter analysis is developed herein by
means of Galerkin’s process for a two-dimensional flat panel
held in some manner at its leading and trailing edges and
acted on by a middle-plane or axial force (which, in the case
of tension, introduces & restoring force similar to that for the
membrane). The upper surface of the panel is subjected to

1 Superscdes NACA Technical Notoe 3485 by Herbert O. Nelson and Herbert J. Qunningham, 1935.
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a supersonic stream and the lower surface to an unconfined
mass of stationary compressible 2ir. The normal modes of
the panel with no middle-plane force acting are used as de-
grees of freedom in the analysis. As in reference 5, exact
linearized unsteady aerodynamic forces are employed. In
the reference paper the integrals yielding these forces are
evaluated analytically. In the present report these integrals
are evaluated numerically.

Numerical results are presented in order to examine some
effects of including two and then four modes in the analysis
and to determine effects of Mach number, density of the
supersonic stream, panel mass and stiffness, edge fixity (to
some extent), structural damping, axial load, and density of
the still air below the panel. In appendix A an alternative
solution by means of Laplace transforms is developed for the
plate problem just described. No numerical results are ob-
tained by this method, however.

A comparison of results from the theory presented herein
for flat panels and from a criterion of reference 3 for the static
stability of buckled panels is made with a few experimental
results for flat and buckled panels clamped at the leading
and trailing edges.

SYMBOLS

speed of sound in undisturbed medium
structural and serodynamic integrals de-
fined after equation (13)
panel chord
Er3

10081 ﬂe.\'uml stiﬁness, m

Young’s modulus of elasticity of panel
material

tension parameter, F/c*m 4o,®

Tunctions defined in equation (24)

external force per unit width acting in
midplane of panel (tensile force posi-
tive)

g structural damping coefficient

Grun matrix elements defined in equation (13)

H®(u) Hankel function of second kind, of zero
order, (notation of ref. 18)

aerodynamic integrals defined after equa-
tion (23)

Bessel functions of order p of first and
second kind, respectively, (notation of

ST

SE

Imu)jmm?mu

Jp(W), Yo (w)

ref. 18)

k reduced frequency, cw/2U

ky stiffness parameter (reduced first natural
frequency), ¢, /20U

K, eigenvalues defined after equations (16)

and (17) and given for first four panel
modes in table 1

L(u),L(x) aerodynamic functions defined after equa-
— tion (21)
L.(u) aerodynamic functions defined after equa-

tion (B16)
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m, panel mass per unit surface area, o7
M Mach number, U/a
NV,N; coefficients in mode-shape equations (16)

and (17), given for first four panecl
modes in table I

p(z,t) net perturbation pressure, positive down-
ward -

Da(T) pressure coefficient associated with mode
shape Z,, defined in equation (20)

D, D1 upper- and lower-surface contributions to
perturbation pressure, respectively

Pw,Do pressures in undisturbed supersonic stream

= and still-air region, respectively

P, (2),Py(),Py(x) components of p,(z) defined after equa-
tion (22)

q dynamic pressure, -;— pU®

8 coefficients of equations (28) and (B15)
tabulated in appendix B for first four
modes of panel with clamped edges

t time

U velocity of supersonic stream

z,,2 coordinates defined in figure 1

z(z,t) vertical displacement of panel

Z(2) flutter mode shape

Zu(x) nth natural mode shape for panel vibrating
in vacuo

u panel-air mass ratio, m4/oc

v * Poisson’s ratio

pPo densities in undisturbed supersonic stream
and still-air region, respectively

o density of panel material

T local thickness of panel

] disturbance-velocity potential

w frequency of oscillation

W frequency associated with mode shapo Z,

® frequency parameter, 2kM?/8?

2
Q frequency ratio squared (%) » except in
flutter calculations where 9=<%>2 (1+41g)

[1 square matrix ’

{1} column matrix

Subscripts:

U upper-surface contribution

l lower-surface contribution

Primes denote differentiation with respect to the argument.

ANALYSIS

STATEMENT OF PROBLEM

A thin isotropic, two-dimensional plate (beam) of con-
stant thickness, as shown in figure 1, is considered herein.
The plate is undergoing simple harmonic motion and is
acted on by a middle-plane or axial force F (tension or
compression); its upper surface is subjected to a supersonic
stream of velocity U, pressure p,, and density p, and its
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I'rqure 1.—Sketch of flexible two-dimensional panel.

lower surface is subjected to still air with pressure p, and
density p,, The differential equation of motion for the
plate may be written as
i 2 2,
D m POt (pa—pp@)=0 (D)
where, in the present case, the vertical displacement of the
plate z(z,t) may be expressed as Z(z)e*!, w is the circular
frequency of oscillation, p(z,f) is the net perturbation pres-
sure (positive downward) arising from the motion of the
plate, m, is the plate mass per unit surface area, and the
local flexural stiffness D is given by Er*/12(1—1?). For the
case where p(z,f)=0, equation (1) may be obtained, with
appropriate changes in notation, from reference 8.

In the remaining development the constant-pressure
term p.—p, of equation (1) is considered to be zero. This
in no way affects the generality of the results for the oscil-
lating plate, since inclusion of the constant-pressure term
as nonzero would result only in adding a particular solution
which represents a static vertical deflection. In addition,
the coordinate z of equation (1) is divided by the plate
chord ¢ and henceforth is employed in this nondimensional
sense. Thus, equation (1) multiplied by ¢~** becomes

Dz —imaz-L 2 pane om0 @

where the primes denote differentiation with respect to
the argument z.

In order to obtain a specific solution of equation (2),
four boundary conditions are required. The plate is con-
sidered to be held at its leading and trailing edges as shown
in figure 1, and this assumption leads to the conditions for
pinned edges:

Z0)=Z(1)=2""(0)=2""(1)=0 (3)
and for clamped edges:

Z(0)=Z(1)=2'(0)=2Z'(1)=0 (4)
In a later section of the analysis the boundary-value prob-

lems, as exemplified by equations (2) and (3) or (2) and
(4), are solved by Galerkin’s method. Also considered in

appendix A are the solutions to these problems by means
of Laplace transforms.

NET PERTURBATION PRESSURE p(x,?)

The net pressure p(x,f), as mentioned previously, arises
from the oscillatory motion of the plate. It is this pressure
which damps, or in the case of flutter sustains, the oscillation.
The pressure on the upper surface is obtained from the
theory for linearized unsteady supersonic flow and the
pressure on the lower surface from acoustical theory. The
perturbation pressure in terms of the pressures p, on the
upper surface and p; on the lower surface is

PE)=pu—p: (5)
where
—, (9% Qb¢u>
Pe=P\31 7% oz (6)
and
o)
P1=Po£ (7

From reference 9 the velocity potential for the upper surface
can be obtained in the form

s~ [z @+ S5 |e-meon] Ze—p e ©

where

5=2kﬂl z
£

Based on reference 10, the velocity potential for the lower
surface can be obtained, as shown in appendix B, in the form

B=VI—1 k=g

wcgiwl

b=— 5

1
|, zome @ana-se ©

where Hy®(z) is the Hankel function of the second kind,
of zero order.

SOLUTION BY GALERKIN’S METHOD

Outline of method.—The boundary-value problems con-
sidered earlier (egs. (2) and (3) for the pinned-edge plate
and equations (2) and (4) for the clamped-edge plate) are
now solved by means of Galerkin’s method. (A detailed
account of Galerkin’s method may be found in ref. 11.) As
a first step, the flutter mode shape Z(z) is approximated by
a linear combination of the form

Z@)=c2 0,242 10)

where the coefficients ¢, may represent complex amplitudes
and where the functions Z,(x) are the mode shapes for the
plate vibrating in a vacuum without an axial force F acting.
The function Z; is the fundamental mode shape associated
with the lowest natural frequency w;, and the remaining
functions Z,, Z,;, . . . Zy are consecutively the higher modes
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shapes. The shapes Z, satisfy the pinned-edge or clamped-
edge boundary conditions (Z, replacing Z in egs. (3) and (4))
and the differential equation

D

o Z" —wetm 4 Z =0 11

where w, is the frequency of oscillation for which Z, is the
mode shape.

The remainder of the Galerkin process for solving the

aforementioned boundary-value problems consists of deter-
mining the coefficients a, of equation (10) in the following
manner: Substitute equation (10) into equation (2), replace

the terch‘Z,’ " by w.nsZ, in accordance with equation

(11), multiply by one of the mode shapes Z,, integrate the
result from =0 to z=1, and equate to zero. When n is
made 1, 2, . . . N in succession, N linear equations are

obtained which determine the unknowns a.. These equa-
tions can be written in the form
Gu G]g « o GIN ay 0
Ggl Gg«g ... GQN aa 0
= (12)

Gm GNE [ GNN 154 0

The matrix elements are given by

Gmn'_——l-'-{Anu'_ Q [(c:‘,_‘:')—Amu_i_men] } — Omu (1 3)
where
M -
= oC Aﬂl ‘I; ZnZn dx
9=<ﬂ B— f 707,
w 0
F 1
g O 2t

and where p,(x) is the pressure p(z,t), obtained from equa-~
tions (5) to (9) with Z replaced by Z,, multiplied by
e~ tfpew®. In equation (13) w, and w, are the first and the
mth natural frequency, respectively, of the plate with no
axial force acting.

Flutter determinant.—The flutter condition or condition
of harmonic vibration, which is given by the nontrivial
solution for the coefficients a,, is obtained from equation (12)
by setting the determinant of the matrix Gy, equal to zero.
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Thus the flutter condition may be expressed in the form

Gu Gm .« G’w
G Gy ... Guy

=0 (14)
GNl GNg PPN GNN

Remarks on alternative procedure.—The procedure from
equation (11) to equation (13) is, in general, not the most
accurate that could be followed for values of F other than
zero. A generally more accurate procedure would be to use,
instead of equation (11), the differential equation for the
panel with tension:

-CDT Z.""—w,’mAZ,—g Z.=0 (15)

When equation (15) is solved, subject to the appropriate
boundary conditions, the frequencies w, are found to be
functions of F for both pinned and clamped edges, but the
mode shapes Z, do not vary with F for pinned edges. The
use of equation (15) rather than equation (11) would mean
that in equation (13) the term fB,, would not appear and
the frequencies and mode shapes would be those that satisfy
equation (15).

Equation (11) rather than equation (15) has been used
herein for the following reasons: For pinned-edge panels
there is no difference in the mode shapes or in the final
numerical flutter results; for clamped-edge panels the deter-
mination of the values of Z, and w, that satisfy equation
(15) is laborious and must be carried out for every desired
value of 7 Elimination of the term fB,. from the matrix
elements, through use of equation (15), does not compensato
for the labor of determining the natural frequencies and mode
shapes as functions of F. The differences in final numerical
flutter results for the clamped-edge panel approach zero as
the number of modes in the analysis is increased and are
expected to be small even when only a few modes are used.

EVALUATION OF TERMS IN FLUTTER DETERMINANT

Structural integrals A,,, and B, and frequencies w,.—
Consideration will now be given to the evaluation of the
mode-shape integrals and frequencies in the elements of
equation (15). The mode shapes Z, and associated natural
frequencies w, obtained from equation (12) are:

For the pinned-edge plate,

Z,.=N, sin K,z

oK R (16)
mAc‘
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where K, is obtained from. the frequency equation
sin K,=0
For the clamped-edge plate,

Z,=Nj[cos Kz~ cosh K,z N;(sin K—sinh K,z)]

17)
w=K,? |/ D :
m,c

where K, is obtained from the frequency equation

cos K, cosh K,=1

In equations (16) and (17) the factor NV, is used to produce
unit deflection at the center of the plate (x=0.5) for modes
that are symmetric about the center and at the point of
maximum deflection between the leading edge (z=0) and
the center of the plate for modes that are antisymmetric
about the center. The factor NV, in equation (17) is estab-
lished by the boundary condition requiring zero deflection
at =1 and is expressed by

__cos K,—cosh K,
sin K,—sinh K,

Ny= (18)

The quantities @, wm/w), Ams, 80d Ba, required in equa-
tion (14) can be determined directly from equations (16) or
(17). First, however, values must be established for N, and
K, in the case of the pinned-edge plate and for V;, IV, and
K, in the case of the clamped-edge plate. Table I includes
values of all these quantities for the first four modes of
vibration. ’

The values for A,x shown in table I are zero when m=~n
because of the orthogonality of the mode shapes Z, of equa-
tions (16) and (17).

For the pinned-edge case the slopes.

por b ([ -aiori i
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TABLE L—MODE-SHAPE FACTORS, EIGENVALUES,
FREQUENCY RATIOS, AND STRUCTURAL INTEGRAILS
FOR FIRST FOUR NORMAL MODES

(a) Pidned-edge plate »

Mode, n M Ny K, wafor p: Baa
1 ) S L 1 0.5 0. 52
2 N PO 2x 4 .5 2 0x2
3 ) A [, 3 9 .5 4.5x2
4 1} e 4x 16 5 8. 022
2 Aun=tBux=0 (mysn)
(b) Clamped-edge plate b- ¢
Mode, M Na K. wufen Ana Baa
n
1 —0. 620699 —0. 98250 4.730 1 0. 396 4.88
2 —. 66260 —1. 000778 7.853204625 | 2. 7508 440 21.3
3 . 7100645 —. 00997 10. 99560784 5.404 . 508 40.8
4 —. 66120074 —1. 00000145 14.13716549 8933 .432 76.4
b A--:'o (m?‘ﬂ)
Biym= By =
By= Byy=—8.360

Other Bua=0 (mysn) .
e The significant figures shown were nsed to avold small-difference errors in mode shapes

Z.' of the mode shapes are also orthogonal and, consequently,
B, 18 zero when ms>£n. For the clamped-edge case, even
though the slopes Z,’ are not orthogonal, the integrand of
B.., is antisymmetric about £=0.5 when m and n are not
both even or both odd and, consequently, B, is zero when
m>%n except for Bz, Bs, Bu, and By (for the first four
modes).

Aerodynamic integrals Cmn.—The remaining term in the
elements of equation (14) that requires evaluation is the
integral

1
Cun= || Zupi2 (19)
Asmentioned previously, p.(z) is the pressure p(z,t), obtained

from equations (5) to (9) with Z replaced by Z,, multiplied
by e **/pcw?®. The quantity p,(z) is therefore given by

o150, | 7 =9 de+

n] e—1TE—D J, [ﬂ% (:c—E)] dt })H_‘_

[ [zt %

2l2 [ z@Eo kM~ | (20)

where the contributions from the upper and lower surfaces of the plate are designated by subscripts u and /, respectively.
Upon elimination of the derivatives in the integrands of the upper-surface contribution through integration by parts,
performance of the indicated differentiation of the second integral, and extraction of the singularity at {=z in the
Hankel function of the lower-surface contribution, equation (20) may be written in the form

o=t [ ZaoLa—pirtg

2t 2@ | +2] [ Z@Te—pders [ 2.0 los. Gle—thie |, 0
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where

L(u)=[ Mo;; 2 (M )+ e ‘(A% "’)+

359 (3w | o

Ttwy=s5 Ju(2kM ) +5 Y o2k ) — log, (e [u])

Z(O)=;—’r+% +=0.577216 (Euler’s constant)

The quantities J, and Y, are the Bessel functions of order
P, of the first and second kind, respectively.

For convenience p,(x) is considered in three parts, namely,
Pa@) =P (x)+Po(@)+Py() (22)
where

ﬂIQ

P3| [} ZLe—pdet 5 L2 20+ 2 200 |

P=2 [ 2.0 Le—ddk

P=22 f Z,(®) log, (:M|z—¢|)ds

Hence, equation (19) may be put in the form

Gmn—_— mn+Tm:+Tmn (23)

where

Lo f ' Z.P.(0)dz
[1]

T f ' 7.P.@)dz
c

T f ' 7.B.(2)dx
0

The first integral I,., represents the effect of the supersonic
stream passing over the upper surface of the plate; the other
two integrals represent the effect of the still air below the
plate.

Before further development of the method of the present
report for determining C,,, the aerodynamic treatments of
references 1, 2, and 5, which deal with the pinned-edge
plate, will be examined. These references consider only the
effects of the supersonic stream, the air below the plate
being treated, in essence, as massless; that is, po/p is taken to
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be zero and the integrals I,, and T,.. are omitted. In
references 1 and 2 the aerodynamic effects are accounted for
as if the integral I,. has been expanded as a power series in
the frequency of oscillation; reference 1 retains only the
steady-state or zero-order frequency term and reference 2
adds the first-order frequency term. In reference 5, on the
other hand, the integral I, is evaluated exactly with regard
to the frequency. This is possible because the modal
functions Z, for the pinned-edge plate are sine waves (scc
eq. (16)) so that I, can be obtained in terms of the functions
(sometimes called Schwarz functions)

1 L U
f)‘(a/, b)=ﬁ . we ™ J, <E> du O\=0, 1) (24)
b
where
a==b

and b has the four values

{40

A similar result could be obtained for the clamped-edge
plate by approximating the modal functions Z, (see eq. (17))
by a finite sine series

R
Z,z‘zld, sin rax
=
For either pinned or clamped edges, the arguments ¢ and &
of the Schwarz functions fi would range from large positive
to large negative values, particularly for the higher modes,
and would thus require extensive tabulation of f, and /f;.
The exact expression for the pressure term p,(x) is employed
in the present report but, because the necessary tables of f, and
fi1 are not available, for convenience, & numerical method of

integration is used to evaluate p,(z) and the aerodynamic

integrals Iy, T ma, and I=,,,,. of equation (23).
The numerical method is based on the following integration
rules for parabolic ares:

y@de=3 Byt sy (@250)

|7 o=tz

where r;=2,+Az and z;==2,+Ax. The range of integration
in equation (19), 0Sz=<1, is, for convenience, divided into
an even number of equal segments. From the standpoint
of accuracy the number of segments needed depends on the
number of nodes in the highest mode and on the value of

[— (@) +8y(a2)+- 5y(xs)) (25b)
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@ for which p,(z) is evaluated. For the numerical applications of the present report, 10 segments were found to be
adequate, and the method of integration is illustrated for this number of segments in the equations to follow.

The use of 10 segments would, in general, require the determination of p,(x) in equation (19) at 11 points on the plate.
However, the integrand of C,. at =0 and z=1 is zero since the mode shapes Z, are zero at these points, and therefore
Pa(z) need be evaluated at only the 9 interior points (equally spaced between z=0 and z=1). The values of the terms

P,, P,, and P, of equation (22) for these points may be arranged in matrix form as follows:

[ P.(.1)) [ 8L(0) —L(—.1) 0 0 0 0 0 0 0 { Z.(1))
P.(.2) 18L(1) 7L(O) —L(—-.1) 0 0 0 0 0 of | z.2
P.(.3) 13L(.2) 12L(1) 7L(0) —L(—.1) 0 0 0 0 0l | z.3)
Pa(.4) L | BE®) 12L(D) 12L(1)  TLO)  —L(~.D) 0 0 0 AT
< P.(5) h_"” 13L(.4) 12L(3) 12L(2) 12L(1) 7LO) —L(—.1) 0 0 0 Za(.5) ¢+
P,(.6) 13L(.5) 12L(4) 12L(.3) 11L(.2) 15L(1) 4L(0) 0 0 0| | Z.(6)
Pa(7) 13L(.6) 12L(5) 12L(4) 11L(.3) 14L(2) 12L(1) 5L(0) 0 0| | z.
P.(.8) 13L(.7) 12L(.6) 12L(.5) 11L(4) 14L(.3) 11L(2) 13L(1) 5L(0) 0| | z.8
L Pa(.9) J | 13L(.8) 12L(7) 12L(6) 11L(5) 14L(4) 11L(3) 12L(.2) 13L(1) B5L(O)| | Z.(9) ]
(7.1 (7. (1) )
Za(.2) Z,(.2)
Z.(.3) Z.(.3)
. Z.(4) Z4(4)
’(ﬂﬁﬁ,z)w Za(-5) >+4k—1,ﬁ< ZJ(5) - 26)
Za(.6) Z,’(.6)
Zu(.T) Z,' (T
Z.(.8) Z,(.8)
L Za(9) J L Z./(.9) )
(Ba(1)) [Z) I(1) L2 I3 I(49 L5 L8 LN L8| [137.(1))
Pa(.2) Z(1) I IL(1) I(2 L3 L4 I(5) L8 L 12Z.(.2)
Fu(.3) T(2) I(D) I I(1) L(2) I(3) LG4 L5 L8 12Z,(.3)
P.(4) (3 I(2) I(1) L@O I(1) L2 L3 L4 L5 11Z.(.4)
. Jﬁ.(.s) >=§;’—6’ I(4 I(3) L(2 L) IO I(1) I(2) L3 I | 3 14Z.(5) ¢ 27
P.(.6) L(5) I(4) IL(3) IL(2 L(1) LO) I() L2 L3 11Z,(.6)
BT L(6) I(5) I(4 I3 L2 I(1) IO I L2 122,01
P.(.8) L(7n L6 I(5 L4 L3 L2 L) L0 L1 12Z.(.8)
L Pal.9) | Z(8) L(7 IL(8) L(5 L(4) I(3) L2 L(1) L@ 13Z.(.9) J
(P(D)) (T L) LD L) LD LD (D) Ly L) Ln(h |
P,(.2) L(2 L2 In(2) L2 L2 L2 L2 L2 ILn(2) L(2) || &
Po(.3) L(3) L(3) L(3) L(3) L(3) L3 L() L(d ILu(d ILu(I || e
Pu(4) L4 L9 L9 L I Lo L) L L9 Lol ||
JEBD (oo [ L L&) L5 L5 L5 L8 In(5) Ls(5) Lu(H) ILnoB) |Jas | @5)
P,(.6) 4 | Li(.6) Ls(.8) Ls(.6) Li(.6) Ls(.6) Ls(.8) L:i(.6) ILs(.6) Ls(.6) Luo(.8) 88
Po(.7) L(D LD LD LD LD LD LN L LD LulD || &
P(8) L(8) L8 In(8) L(8) L(8) In(8) ILi(8 I8 L(8 Lu(® || &
P.(.9) Li(9) I:9 L9 L9 L9 L9 L9 L9 L9 L || % J
\ L A Usn

where L(u) and L(u) are defined after equation (21) and f,(u) and s, are defined in appendix B (egs. (B16) and (B15)).
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The rows of the square matrix in equation (26), down to the
row pertaining to P,(.5), were obtained by applying the
integration rule given by equation (25a). In the remaining
rows the contributions from the region >>0.5 were obtained
by applying equation (25b). In equation (27) the inte-
grating factors multiplying Z, in the column matrix were
obtained by using equation (25a) between 2=0 and z=0.5
and equation (25b) between z=0.5 and z=1.0. In appendix

B the singular integral P,(z) presented after equation (22)

is evaluated and the form of P, leading to equation (28) is
derived.

Equations (26), (27), and (28) are summed in accordance
with equation (22) to obtain the column matrix {p.()}.
By use of this column matrix and the integration rules of
equation (25), the aerodynamic term (%, is obtained in
the form

a,,,,.=ilz_0 [180(-1)Zn(-1)+12p0(-2)Z:a(-2)+12pu(-3)Zn(-3)+

119:(-4)Zn(-4)+14Pu(-5) Zn(.5) +11pa(-6) Zn(.6) +
12pa(- 1) Zn(-7)+12Pa(-8)Zn(-8)+131(-9) Z(.9)] (29)

where the integrating factors 13, 12, . . . 12, 13 were ob-
tained in the same manner as those in equation (27). By
means of equation (29), G, can be evaluated for a given edge
fixity and for particular values of-M, k, and po/p.

SOLUTION OF FLUTTER DETERMINANT

As previously stated, the conditions for flutter are de-
termined from the nontrivial solutions of equation (14).
Since equation (14) is complex, it may be solved directly for
one complex unknown or two real unknowns. For a specific
edge fixity the variables (see eq. (13)) in equation (14) are
1/n (the inverse of p is preferred because x becomes infinite
for p=0), @, f, M, k, and po/p. It is convenient to interpret
the Q of equation (13) as the complex quantity (w/w)*(1-+1ig)
rather than (w;/w)?, where g may be regarded as a structural
damping coefficient. (For this use of g, see, for example,
refs. 12 and 13.) Each of the various quantities on which
equation (14) is dependent was varied to some extent, as
will be discussed in the next section. A particular calcula-
tion was performed by setting values for 1/p, M, k, f, and
po/p and solving for @. Then, because it was one of the more
easily varied parameters, 1/u was changed and again Q was
solved for. This procedure was continued until curves of
1/p and (R.P.Q)"? plotted against g passed through g=0.
The value for & was then changed and the procedure re-
peated. After sufficient variation of 1/px and k, curves
could be established of 1/u against 2k,=2k(R.P.Q)Y? for
particular values of the other parameters M, g, f, and po/p.

RESULTS AND DISCUSSION

In the preceding sections a method of flutter analysis has
been developed for & two-dimensional flat panel or plate held
at its leading and trailing edges. The variables in the
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analysis are the number of modes or degrees of freedom tho
panel is assumed to have, Mach number (greater than 1.0),
1/p, 2k,=2k(R.P.Q)Y% g, f," m/p, and edge fixity. The
analysis conveniently yields stability boundaries in terms of
1/u and 2k,, which are used as the coordinates of most of the
figures presented. These two parameters are given in terms
of the properties of the panel and supersonic stream by

1_»pc

,U.—O"r

ot K 1 E (30)
U V2ua—M Vo g

where ¢ is panel density, ¢ is dynamic pressure, and K is the
first-mode eigenvalue given in table I for clamped and pinned
edges. Inasmuch as the various parameters in the analysis
contain implicitly the panel properties (E, o, », and 7/c),
axial force F, air density, and speed of sound, the effects of
varying these implicit properties can be obtained only by
cross-plotting.

Some effects of the number of modes used in the analysis
are studied by using two and then four modes of the clamped-
edge panel with selected values of M, g, f, and p/e. In
addition, M, g, f, and p/p are varied in order to study their
effects. To a lesser extent the pinned-edge panel is investi-
gated for comparison with certain clamped-edge results.

The following table lists the conditions for which stability
boundaries are given:

Mach Degrees Density
number, of Structural damping Tenslon param- ratlo,
M freedom coeflclent, ¢ etor, f e
Clamped edge
0 « 0
2 0
L3 0, 0.1, 0.5, 1.0 1.0
) ) 0, 0.005, 0.025, 0.03, 0.05 0 0
0 0, 0.1,0.5, 1.0 0
2 2 0, 0.002, 0.00375, 0.05 0 0
2 1 0 0
1.58
4 0 0 0
Pinned edge
V2 2 0, 0.003, 0.00475, 0.05 0 0

The results are first grouped according to Mach number
and are later summarized and compared.

RESULTS FOR MACH NUMBER OF 1.3

Effects of two and four modes.—Figure 2 gives the results
for the clamped-edge panel for the simple case of two degrees
of freedom (first and second modes) with g=f=p/p=0.
The abscisse is the stiffness parameter w,c/U=2k, and the
ordinate is the mass ratio 1/u. An ordinate of zero repre-
sents the limiting case of p=0, or, in other words, the plate
is vibrating in a vacuum. The two solid curves are the first-
and second-mode stability boundaries as indicated. It was
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Fraure 2.—S8tability boundaries from a two-mode analysis for
clamped-edge panels. M=1.3; g=f=%=0.

established by application of the Nyquist criterion (see, for
example, ref. 14) as well as by interpretation of structural-
damping results that the region to the right of the first mode
boundary is stable, whereas the region to the left is unstable;
furthermore, the region within the second-mode boundary is
doubly unstable as indicated (unstable with regard to both
boundaries). Values of the reduced frequency % are indi-
cated along both curves. The points at which the curves
cross the abscissa correspond to vibration in a pure normal
mode (flutter at the limiting condition of p=0).

It can be seen from equations (30), by taking the product
of 1/u and 2k, that a specified panel material, air density,
and speed of sound are represented by & hyperbola such as
the dashed curve of figure 2 with the panel thickness-chord
ratio 7/c increasing to the right. The intersection of the
hyperbola with the stability boundary fixes the value of /¢
for neutral stability. Thicker panels are stable and thinner
panels are unstable. (The particular hyperbola shown is for
aluminum panels in air with standard sea-level properties.
For denser panels or less dense air, the hyperbola would be
below the one shown.)

Some effects of the number of modes in the analysis were
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studied by including the first four normal modes, and the
results are shown as the solid curves of figure 3. The dashed
curves are the results for two modes from figure 2. With the
addition of the third and fourth modes, the first-mode bound-
ary is moved very slightly to the left (except where it crosses
the abscissa) and is still the “critical” or decisive stability
boundary separating the stable from the unstable region.
The second-mode boundary is also only moderately affected.
Within the already unstable region there now exist third-
mode and fourth-mode boundaries which are closely anal-
ogous in appearance and character to the first- and second-
mode boundaries, respectively. The unstable region is
divided by three of the boundaries, into regions of different
degrees of instability as indicated by the numbers in paren-
theses ranging from (1) to (4). (The points at which the
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Fiqure 3.—Stability boundaries from two-mode and four-mode
analyses for clamped-edge panels. Af=1.3; g=f=?= .
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various boundaries cross the abscissa have the same signifi-
cance as before.) These results indicate that two modes
give a decisive stability boundary which is a close approxima-
tion to that for a large number of modes, at least for the con-
ditions g=f=py/p=0 and M=1.3.

Effects of structural damping coefficient g.—Figures 4 (a)
and 4 (b) show the first-mode and second-mode boundaries
{from a four-mode analysis) for various values of g (taken
to be the same for all modes). Third- and fourth-mode
boundaries are affected by g in a manner similar to that of
the first and second modes, respectively, and are not shown.
The second-mode boundary of figure 4 (b) vanishes com-
pletely when g becomes slightly greater than 0.025, and for
all positive values of g it remains in the unstable region to the
left of the first-mode boundary. Included in figure 4 is the
dashed hyperbola from figure 2. Since the thickness-chord

ratio 7/c decreases to the left in the figure, the abscissas of |

the intersections of the hyperbola with the stability bound-
aries in figure 4 (a) show the proportional reduction in
thickness required to prevent flutter as g increases.

Effects of tension.—Tension has a marked effect on the
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(a) First-mode boundary.
Fiaure 4.—First-mode and second-mode stability boundaries from
a four-mode analysis for clamped-edge panels for various values of
Po

structural damping coefficient g. A =1.3; f=;= A
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stability boundaries, as shown in figures 5 (a) and 5 (b).
Figure 5 (a) shows the pertinent segments of the first-,
second-, third-, and fourth-mode stability boundaries for
£=0 and for the three values 0.1, 0.5, and 1.0 of the tension
parameter f. As f increases, all the boundaries move to the
left, and the thickness required to prevent flutter is de-
creased. Furthermore, as f increases, the first-mode bound-
ary moves to the left more rapidly than the higher mode
boundaries so that the rightmost boundary, separating
stable from unstable regions, is one of the higher mode
boundaries. For example, for f=1.0 in figure 5§ (a), the
third-mode boundary is farthest to the right. This trend is
not surprising since application of tension to the clamped-
edge plate causes the largest percentage increase in the first
natural frequency, the next largest in the second natural
frequency, and so on. Thus, it appears that the inclusion
of only two modes in & flutter analysis may not be sufficient
when the plate is subjected to tension. Inasmuch as the
stiffness parameter 2%, and the tension parameter f are both

25
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Fiaure 4.—Concluded.
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M=13; %:0.

based on the first natural frequency of the panel without
tension, the shift of the boundaries is due solely to the
tensile force F.

Figure 5 (b) shows segments of the first-, second-, third-,
and fourth-mode boundaries with f=0.1, 0.5, and 1.0 for
£=0.005. By comparing figures 5 (b) and 5 (a) it can be
seen that g has a marked effect for the smaller values of f but
its effect diminighes as f increases.

Effects of still air below panel.—The one remaining pa-
rameter to be considered at M=1.3 is py/p, the ratio of the
density of the still air below the panel to the density of the
supersonic stream above. In the preceding results this
ratio was zero. The effect of increasing pyf/p to 1.0 will now
be examined. For the sake of simplicity and conveniences,
only a two-mode analysis is made. Effects of structural
damping and tension are also included.

Figure 6 (a) shows first- and second-mode boundaries for
pof/p=1 as solid curves and, for comparison, the dashed
boundaries for py/p=0 from figure 2. Just as with the other
results, the points where the boundaries cross the abscissa

675

correspond to pure-mode resonance in a vacuum. At these
crossings the imaginary part of C,., passes through zero.
This imaginary part is a measure of aerodynamic damping.
In the previous calculations C,, consisted only of I,,,

whereas, for po/p=1.0, C,, also contains I,,+TI,, (see eq.
(23)). By comparison of the solid and dashed curves on
figure 6 (a) it can be seen that, as a consequence, the first-
mode boundary has moved to the left by about 20 percent
but the second-mode boundary has changed relatively little.

Such an effect of still air might be expected since, for the
same maximum panel amplitude, a first-mode vibration
radiates into the still-air region a greater amount of energy
per cycle than does a second-mode vibration. (With regard
to the radiation of sound from a piston in a plane wall,
specifically for the case of a piston with nonrigid face, p. 336
of ref. 15 gives the result that, at frequencies which are
small compared with the ratio of the speed of sound to 2«
times the piston radius, the pressure on the piston is approxi-
mately uniform and nearly proportional to the average
velocity of the piston. Since the average velocity of the
second mode and all other antisymmetric modes is zero, the
pressure due to these modes is nearly zero and, aceordingly,
almost no work is being done on the still air.) From the
fact that net energy can never pass from the still air into the
panel, it does not follow, however, that the still air neces-
sarily has a stabilizing effect in all cases. Conceivably, the
still air could act to modify the flutter mode so that more
energy would be extracted from the supersonic stream, and
thus contribute toward an instability. Apparently such is
the case in figure 6 (a), where the solid second-mode curve
is above the dashed second-mode curve. The fact that
dissipation of energy into the still air is not necessarily
stabilizing should not be surprising, inasmuch as another
means of energy dissipation, structural damping, is usually
stabilizing but sometimes destabilizing.

As can be observed in figure 6 (&), the first-mode boundary
has moved to the left of the second-mode boundary in the
region of small mass ratio; in this region the second-mode
boundary becomes critical.

Figure 6 (b) shows the effects of structural damping on the
first-mode boundary, which for g=0 is shown more com-
pletely in figure 6 (a). Curves are included for g=0, 0.005,
0.03, and 0.05. For values of g larger than about 0.025 the
second-mode boundary vanishes as it did previously with
po/p=0 in figure 4 (b), and only the first-mode boundary
remeains. The dashed hyperbola for aluminum at sea level
is included in figure 6 (b), and it can be seen that a plate with
zero structural damping would have to be about 30 percent
thicker than one with g=0.05 in order to prevent flutter.

Figure 7 shows the effects of the tension parameter f for
po/p=1 and g=0. Both first- and second-mode boundaries
are shown for f=0, 0.1, 0.5, and 1.0. In this case, just as
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with py/p=0, tension causes a marked reduction in the thick-
ness required to prevent flutter. Furthermore, if more than
two modes had been included, tension would have resulted
in a higher mode boundary farther to the right than the
curves shown for the higher values of f.
RESULTS FOR MACH NUMBER OF .2

Clamped-edge panels.—Figure 8 (a) shows the stability
boundaries obtained from a two-mode analysis for clamped-
edge panels at M=-/2 with f==py/p=0 for various values of g.
Included in the figure is the dashed hyperbola appropriate
to this Mach number for aluminum panels in sea-level air. -
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for g=0, the first-mode boundary of figure 2 appears to have
moved into the positive mass-ratio region and the second-
mode boundary appears to be moving toward the negative
mass-ratio region. Such is the case, but, inasmuch as the
flutter frequencies on the upper boundary of figure 8 (a) are
about midway between the first and second natural fre-
quencies, this boundary can now be referred to only loosely
as a “first-mode” boundary. The lower boundary is still
readily identified as a second-mode boundary and the inter-
section with the abscissa corresponds to vibration in a pure
second mode.

In contrast to the situation at A4=1.3, the second-mode
boundary for g=0 is now decisive for panels represented by
the dashed hyperbola. Values of thickness to the right of the
second-mode boundary are stable and, in addition, a small
range of thickness values is stable between he upper and
second-mode boundaries. +

The curves in figure 8 (2) for positive values of g show that
the region of instability within the second-mode boundary
is reduced for small values of ¢ (as for M=1.3) and vanishes
when g is slightly greater than 0.00375, but th at small values
of g increase the region of instability associated with the
upper boundary. This effect of ¢ on the upper bound ary is
in marked contrast to its effect on the first-mode boundary
at M=1.3. (See fig. 4 (2).) The differing effects of struc-
tural damping at M=1.3, M=+2, and M=1.56 are con-
sidered further in the section on “Variations With Mach
Number.”

From a comparison of figure 2 and the curves of figure 8 (a)

Pinned-edge panels.—In order to indicate effects of edge



THEORETICAL INVESTIGATION OF FLUTTER OF FLAT PANELS EXPOSED TO SUPERSONIC POTENTIAL FLOW

fixity, boundaries are shown in figure 8 (b) for conditions
identical to those of figure 8 (a) except that the edges are
pinned rather than clamped. The boundaries for g=0,
which are given incompletely in reference 5 and thereby lead
to the conclusion that only & small range of panel thickness
is stable at M=+/2, have been extended to higher frequencies
with the result that sufficiently thick panels are also found
to be stable. The effect of structural damping on both
boundaries in figure 8 (b) is very similar to that in figure 8 (a).
The dashed hyperbola appropriate to pinned-edge aluminum
panels in sea-level air is included in the figure. The hyper-
bolas of figures 8 (2) and 8 (b) are located differently because

of the different values for the first-mode eigenvalue K, of .

equation (30) for pinned and clamped edges. (See table I.)
From the intersection of the dashed hyperbolas with the
stability boundaries in the two figures, it can be determined
that a pinned-edge panel must be somewhat thicker than a
clamped-edge panel in order to be flutter free but not nearly
as thick as might be expected from a simple comparison of
the first natural frequencies. Values of the reduced fre-
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Fiaure 8.—Stability boundaries from a two-mode analysis for
clamped-edge and pinned-edge panels for various values of g.

M=+2; f=%°=0.
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‘quency k are indicated along each of the boundaries of
figure 8.

Based on what occurred at A=1.3 (see fig. 3), there is the
possibility that for g=0 the fourth-mode boundary from 2
four-mode analysis would alter the stability picture in both
figures 8 (a) and 8 (b) in the relatively unimportant narrow
range of stability between the boundaries shown for g¢=0.
This minor effect of the fourth-mode boundary is expected
to disappear for values of g greater than about 0.005 and,
therefore, & four-mode analysis was not made for this Mach
number.

RESULTS FOR MACH NUMBER OF 156

Effects of two and four modes.—As in the case of M=1.3,
stability boundaries were obtained first for two and then for
four degrees of freedom with g=f=p/p=0. These bound-
aries appear in figure 9 as dashed curves for two modes and
solid curves for four modes. Values of the reduced frequency
k are indicated along the boundaries. The stable region is
again to the right, and on the left the degree of instability
is indicated in parentheses for the four-mode analysis.

The two-mode results in figure 9 continue the trend noted
in the preceding section from comparison of the curves of
figure 2 and those of figure 8 (a) for g=0. The second-mode
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boundary has moved entirely into the negative mass-ratio
region. The upper boundary has moved higher in the posi-
tive mass-ratio region, and the flutter frequencies along it,
which in figure 8 (a) were midway between the first and
second natural frequencies, are now closer to the second.
For this reason the upper boundary, which was loosely identi-
fied as a “first-mode’” boundary in the discussion of figure
8 (), will now be referred to as & ‘“‘second-mode’” boundary.

A further point of difference between the results at A/=1.3
and AM=1.56 is that the addition of the third and fourth
modes at 34/=1.56 shifts the decisive stability boundary to
the left by about 10 percent, whereas at Ad=1.3 the shift is
insignificant. (Compare figs. 3 and 9.) Although this shift
indicates that the two-mode result is not well converged, the
two-mode boundary is conservative; that is, it requires a
greater thickness to prevent flutter. (As with two modes,
when four modes are used, half of the stability boundaries fall
in the negative mass-ratio region.)

Effects of structural damping coefficient §.—No curves are
shown to indicate effects of structural damping at 2 Mach
number of 1.56, the reason being that, for moderate values
of the coefficient g, ranging at least up to 0.05, the stability
boundaries fall virtually on top of those for g=0. The major
effect of structural damping is a moderate change in flutter
frequency.

Effects of tension and of still air below panel.—Effects of
tension have not been determined, but tension is expected
to have essentially the same favorable stiffening effect at all
Mach numbers as at A/=1.3. The effect of still air behind
the panel has also not been determined, but this effect is
expected to be less than at M=1.3 for two reasons: First, the
air beneath the panel acts primarily as an energy absorber
and one means of energy absorption, structural damping,
has been found ineffective in shifting the stability boundaries.
Second, on the decisive boundary the flutter mode appears to
be predominantly the second natural panel mode, and it was
found that at AM=1.3 the second-mode boundary is changed
only slightly by increasing po/p from 0 to 1.

VARIATIONS WITH MACH NUMBER

The foregoing results have been presented for particular
Mach numbers. In an effort to clarify some of the anom-
alies that have been noted in these results, figures 10 to 12
are presented. Figure 10 shows the panel thickness-chord
ratio required to prevent flutter as a function of M for
clamped-edge panels with g=f=p)/p=0. The curves apply
to aluminum panels in standard sea-level air. The values
at M=1.3, /2, and 1.56 were obtained from figures 2 and
8 (a) and the two-mode results of figure 9. The shape of the
curves between these known points is estimated. The
stable region is above or to the right of the shaded boundaries.

The boundary which is labeled “first-mode’” on one end
and “second-mode” on the other has flutter frequencies
which progress from slightly above the first natural frequency
to somcwhat below the second natural frequency as the
Mach number is increased. (See previous discussions con-
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cerning figs. 2, 8 (a), and 9.) The boundary labeled “second-
mode” has flutter frequencies slightly below the second
natural frequency throughout.

Figure 10 shows the second-mode stability boundery to
be decisive in the Mach number range from slightly above
1.30 to slightly above 2. As the structural damping g
is increased from zero, the second-mode boundary shrinks
to the left leaving the “first-mode”’—*‘second-mode’’ bound-
ary decisive throughout the range of A/ shown. For example,
for a value of g slightly greater than 0.0038 the second-mode
boundary does not exist at M=-/2 (see fig. 8 (a)), and for
a value of g slightly greater than 0.025 it does not exist at
M=1.3 (see fig. 4 (b)).

These effects of ¢ on the second-mode boundary are
illustrated in figure 11, which contains cross plots of g
against 7/c obtained from the intersections of the dashed
hyperbolas (for aluminum panels in sea-level air) with the
boundaries for constant g such as shown in figures 4, 8 (a),
and 9. Figure 11 also shows that an increase in g from
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zero would cause the “first-mode”’—‘second-mode” bound-
ary of figure 10 to drop markedly at M=1.3, rise slightly
at M=+/2, and remain essentially unchanged at M =1.56.
The ratios of flutter frequency to the first natural frequency
wfw, are indicated for each of the crossings and tend to
show more clearly the connection between figures 10 and 11.
(Values of w/w, near wspfw;, which is approximately 2.76, are
associated with the second-mode boundary and values
between 1.0 and 2.05 are associated with the “first-mode’”’—
“second-mode” boundary.) A complete understanding of
the manner in which the curves change character and position
with Mach number, particularly between M=1.3 and
M=+/2, requires more calculation than presented herein.

Figure 12, which has the same ordinates as figure 10, is
presented for the purpose of summarizing some effects of
all the parameters investigated. The results shown are
based on two modes, except in the case of tension where only
four-mode results are known. The results again apply to
aluminum panels in sea-level air. The figure shows as a
solid curve the shaded boundary from figure 10 for clamped-
edge panels and as a short-dash curve the effect on this
boundary of increasing g from 0 to 0.05. The third (long-
dash) curve is for pinned-edge panels with g=0, the value
at M=2 having been obtained from reference 2. The points
at M=+/2 were obtained from figure 8 (b) and the upper
(second-mode) curve was patterned after that for clamped-
edge panels. As a matter of interest, points are included
in figure 12 at AM=1.3 for clamped-edge panels and indicate
the effects of tension (f=0.5) and of still air below the panel
{po/p=1.0) for g=0 and g=0.05.

Some “effects of the various parameters can be assessed
from figure 12. The overall result is that 7/c is highest in
the low supersonic Mach number range and suggests that
this range is the more critical from a design standpoint.
Structural damping is seen to have a large favorable effect
near and below M=y2. Although rather influential at
M=1.3, the still air below the panel is expected to have less
effect at M=-+/2 and 1.56. Tension, which is seen to have a
large favorable effect at AM=1.3, is expected to be similarly
effective for all Mach numbers. In this connection, it might
be mentioned that one means of producing tension is by a
static-pressure difference between the upper and lower panel
surfaces, particularly for the case where the panel leading
and trailing edges are prevented from moving toward each
other. A comparison of the results for the edge fixities,
pinned and clamped, is of interest because the edge fixity of
actual panels falls somewhere between.

COMPARISON WITH OTHER THEORETICAL WORK

In reference 2 the conclusion is reached that all panels,
regardless of thickness, are unstable for supersonic Mach
numbers less than /2. This result and the more plausible
results of reference 2 for M >+2 are based on air forces
expanded to the first power of the frequency of oscillation.
In reference 5 the necessity of including higher order fre-
quency terms for Mach numbers near /2 is pointed out, and
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stability boundaries, based on exact linearized unsteady air
forces, are presented for M=+2 and M=2. One bound-
ary is obtained at AM/=2 which agrees well with the com-
parable result from reference 2, whereas two boundaries are
obtained at A{=+2. The boundaries at M=-/2, because
they are not carried high enough in frequency, are interpreted
in reference 5 as showing that stability is possible only for a
amall range of panel thickness at this Mach number. The
results of reference 2 for M<{2 are not questioned in
reference 5.

In the present report, stability boundaries are computed
for M=+/2 and for Mach numbers above and below this
value (namely, AM=1.3 and M=1.56). In view of the find-
ings of references 2 and 5, perhaps the most noteworthy
result of the present investigation is that, for the Mach
numbers treated and probably throughout the supersonic
range, sufficiently thick panels are stable.

In references 2 and 5 and the present report, M=42
appears as a transitional value. The transition is evidenced
herein by the contrasting behavior of the stability boundaries
at M=1.3 and M=1.56. Some understanding of why a
Mach number of /2 is transitional can be had by examining

UMP—2)
The term T
(26), being the entire first-order frequency contribution to
the damping, is dominant at low frequencies. This term
appears to control the slope, at low frequencies, of the
eventually decisive stability boundary and changessign as M
passes through /2. When M < /2, the slope is negative for
low frequencies, but as the frequency increases the slope
eventually becomes positive because of the higher order
frequency effects (for example, in fig. 2). Because only
first-order frequency effects are included, in essence only the
beginning portions of the stability boundaries for M<+/2 are
obtained in reference 2, and, as a consequence, the conclusion
is reached that all panels are unstable below this Mach
number. For M>>+2 the slope of the decisive stability
boundary starts out positive and becomes more so as the
frequency incresses. (See fig. 9.) If aspect ratio were
included in the present treatment (by considering three-
dimensional rather than two-dimensional panels), a reduction
in aspect ratio would probably tend to eliminate the initial
negative slope of the eventually decisive stability boundary
for M<+/2 and increase the initial positive slope for 4>>+/2.
This effect of aspect ratio is expected because, in general, a
reduction in aspect ratio results in an increase in aerodynamic
damping with a consequent enlargement of regions of
stability.

In reference 7, which treats a different problem (namely, an
infinite two-dimensional panel on equally spaced supports),
the result was also obtained that somewhere in the supersonic
Mach number range a panel will flutter regardless of its
thickness. The conclusion was reached that stability is not
possible at supersonic Mach numbers less than about 1.25
and that at higher Mach numbers a sufficient increase in
thickness will always render a stable panel unstable. How-
ever, it was observed that over a large portion of the pre-
dicted region of instability the flutter was of an extremely

matrix equation (26). {Z,.} of equation

‘required to double the amplitude.
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mild character, since a large number of oscillations were
With the hope of elimi-
nating the large region of mild instability, small amounts of
viscous damping were included. Contrary to expectations,
thick panels remained unstable for the example given at
M=1.8.

As part of the viscous-damping investigation, the results
were interpreted so as to determine regions of stability and
instability. Asshown in figure 10 of reference 7, an apparent.
conflict with the results of Nyquist diagrams was found.
(The Nyquist diagram coneept is used in general in referenco
7 for determining stability.) This conflict is based on the
assumption that most investigators interpret structural-
damping results according to the concept that removal of
damping tends to destabilize. This assumption is incorrect,
however, and no such simple criterion holds true for inter-
preting structural-damping results. A feature to be noted
in the example chosen in reference 7 to illustrate the apparent
conflict is the existence of infinite singularities in the air forces
at the end points of the boundaries (g=0, 0.01, and 0.03) on
the right in figure 9 of the reference (designated type B loci
therein). By way of explanation, such singularities occur in
the linearized-flow treatment because a traveling wave of
panel deflection is moving at a speed corresponding to M =1
relative to the air above or below the panel.

In this analysis the question of stability was investigated
by means of both the structural-damping concept and the
Nyquist diagram concept. The structural-damping results
in every case agreed with the Nyquist disgram results.
Incidentally, in using the Nyquist concept, knowledge of the
aerodynamic forces for all frequencies from minus infinity
to plus infinity is required. Thus, the concept is not appli-
cable, in general, when the air forces are approximated by o
few terms of a power-series expansion in the frequency of
oscillation.

COMPARISON WITH EXPERIMENT

A few experimental results on the flutter of flat and buckled
panels are available for comparison with the theory of the
present report for flat panels and that of reference 3 for
buckled panels. Reference 16 gives experimental results
at M=1.3 for panels 11.62 inches long in the stream direction
and 8 inches wide that were held by clamping the leading and
trailing edges. In figure 13, the results of reference 16 at
M==1.3, together with date more recently obtained in the
Langley supersonic flutter apparatus on both flat and
buckled panels at other Mach numbers, are compared with
theory. The results are presented in terms of the thickness-
chord ratio 7/c needed to prevent flutter of aluminum-alloy
panels at an altitude of 25,000 feet as a function of Mach
number. These points were obtained from tests of panels
of different, thicknesses (see, for example, ref. 16) and repre-
sent the thinnest panels which did not flutter. (Whero
necessary, experimental data were adjusted to a pressure al-
titude of 25,000 feet with the relation 7/e=(v/c).(g/q,)">.
The subsecript r refers to the experimental conditions.)

In figure 13, the solid curve is the flutter boundary for
flat panels obtained from the present theory and the square
symbols are the corresponding experimental results. The
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Fraure 13.—Minimum panel thickness ratio r/c required to prevent
flutter of aluminum-alloy panels at 25,000-ft altitude.

dashed curve is the static-stability boundary for buckled
panels, proposed as a flutter boundary in reference 3, and the
circles are the associated experimental results. The theo-
retical curves are seen to increase rather sharply near Mach
number 1.0. For buckled panels the increase is due to the
use of steady-state linearized air forces which. become infinite
at AM=1, For flat panels the increase is thought to be

associated with a change in flutter mode and decreased aero- |

dynamic damping. The curve for flat panels would have
a finite ordinate at A=1.0.

As can be seen from figure 13, buckled panels have been
fluttered up to a Mach number of 3. Flat panels were not
fluttered over the same range because buckled panels ap-
peared to be more susceptible to flutter, in general, and dur-
ing a test it was difficult to prevent the thin, flat panels
from buckling due to heating. (A temperature rise of 5°
to 10° I' was sufficient to induce buckling in many panels.)

The agreement between theory and experiment for both
flat and buckled panels is surprisingly good, inasmuch as the
experiments were made on panels with a width-length ratio
of 0.69, whereas the theories are for two-dimensional panels.

CONCLUDING REMARKS

A Rayleigh type analysis involving chosen modes of the
panel as degrees of freedom has been used to treat the flutter
of a two-dimensional flat panel supported at its leading and
trailing edges and subjected to a middle-plane tensile force.
The panel had a supersonic stream passing over its upper
surface and still air below. The aerodynamic forces due to
the supersonic stream were obtained from the theory for
linearized two-dimensional unsteady flow and the forces due
to the still air were obtained from acoustical theory. The
still air beneath the panel was treated on the assumption
that the still-air reservoir extended to infinity. Accordingly,
once acousfic energy was radiated into this region, none of
it was ever reflected. Such a situation is, of course, not the
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same as for a panel on a closed body but represents a first
approximation for many practical cases.

In order to study the effect of increasing the number of
modes in the analysis, two and then four modes were em-
ployed. The modes used were the first four natural modes
of the panel in & vacuum with no tensile force acting. The
analysis included the variables: Mach number 4, structural
damping, tensile force, density of the still air, and edge
fixity (clamped and pinned). For certain combinations of
these variables, stability boundaries were obtained which
can be used to determine the panel thickness required to
prevent flutter for any panel material and altitude.

In contrast to some previous panel flutter investigations,
the present results show that sufficiently thick panels are
flutter free for the Mach numbers treated and suggest that
this is true throughout the supersonic speed range. The
low supersonic Mach numbers were found to be most critical
from a design standpoint in the range examined (from
M=1.3 to M=2.0). Tension was shown at A{=1.3 to have
a marked favorable effect (also expected at all Mach num-
bers) in reducing the thickness required to prevent flutter,
and it was pointed out that one means of producing tension
is by a static pressure difference between the upper and
lower surfaces of the panel. Small amounts of structural
damping were found to have a pronounced beneficial effect.
near and below M/=+/2 and essentially no effect at A{=1.56.
In the neighborhood of MM=+/2 a small change in either
Mach number or structural damping was found to cause an
abrupt change in the thickness required to prevent flutter.
At M=4/2 a pinned-edge panel must be somewhat thicker
than a clamped-edge panel in order to be flutter free: Still
air below the panel was taken into account only at M=1.3
and was shown to have & moderate beneficial effect. For
M>./2 the still air is expected to have little effect because
for this Mach number range the flutter mode is predomi-
nantly the second natural mode, which radiates very little
energy into the still air.

The theories of the present report for flat panels and of
Isaacs for buckled panels were compared with a few experi-
mental results on panels clamped at leading and trailing
edges over the Mach number range 1.2 to 3.0. The agree-
ment was surprisingly good inasmuch as the experiments
were made on panels with a width-length ratio of 0.69,
while the theories are for two-dimensional panels. Over
the Mach number range of the experiments it was found
that buckled panels had to be thicker than flat panels in
order not to flutter. The effect of restraining flat or buckled
panels on all four edges has not been investigated. Such
restraint together with variation of width-length ratio will
probably have & significant effect on the thickness required
to prevent flutter. Another factor which requires investi-
gation is built-in curvature of the panel in the streamwise
or cross-stream direction.

LANGLEY AERONAUTICAL LLABORATORY,
NaTioNAL Apvisory COMMITTEE FOR ABRONAUTICS,
Laweiey Fiewp, Va., April 20, 1966.
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APPENDIX A
SOLUTION BY MEANS OF LAPLACE TRANSFORMS

In a recent paper (rvef. 6), a procedure is outlined for obtaining by means of Laplace transforms the exact solution
for the flutter of a two-dimensional membrane which is subjected to a supersonic stream on one side and stagnant
air on the other. This solution is called exact, inasmuch as the equation of motion for the system is solved directly
without any limitation being imposed on the mode shape or frequency of flutter. Reference 6 also mentions that pure
bending of a plate and the more general case in which plate bending and membrane stretching are combined could be treated
in the same manner. The present report treats the latter case; namely, the flutter of a panel (plate) acted on by a middle-
plane or axial force, such as tension, or compression less than the buckling load. In the body of the report this problem is
solved by the generalized-coordinate approach, and the coordinates used are the normal modes of the panel with no axial force
acting. In this appendix, for the sake of completeness, the solution to the same problem is derived by means of Laplace
transforms to the point where numerical calculations can be made. The feasibility of applying the Laplace transform solution
is examined, but no numerical results are obtained.

The integrodifferential equation to be solved is given by equation (2) which, upon substitution of the expression for
p(x,t) obtained from equations (5) to (9), may be written as

Lzr—im,z-E 2 L LA ik oo ta—part [ odo Lo |5 2 ik [ w0 | =0 @
or alternatively as

Lyr—im,z-L 22 (A one [} L= (rize) waon |- 2 iz [ w@re—de | p=0 42

where

w(x)=2"(2)+12kZ(z)
wy(x)=12kZ(z)

Lo=e=J (5 )
Li(x)=H,?(2kM|z])
Dividing equation (A2) by mw? yields

z=i2'~ 242 g LA oL@+ [} Lta—0 (orizk) v [+ 5 2 a2k [ oo o] f=0 43

where

1 (2 1
& (E) K

__F (aV_
6_m402 o ? (E> =7a
The quantity ; in the formulas for « and & is the first natural frequency of the plate vibrating in & vacuum with no axial force
F acting and K] is the associated eigenvalue. (See table I.) In the case of the membrane, w, would be the first natural {fre-
2
quency of the membrane, « would be zero (D is negligible for the membrane), and f would be (—71-1_> .
Applying the Laplace transform

L{Z(@)) =Z(s)= fo " 2z
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Lo equation (A3) (using in the process pairs 4 and 7, p. 294, ref. 17) yields the transformed problem in the form

a(oZ—ar—ster—se—29— 36 Z—sen—2)— L (5 [ ils— ) Z—(+i202d T +5 22 40°L { I Z(s)L(x-—s)ds} )=0
(A4)

where 2,=2(0), z,=2'(0), z2=2""(0), zs=2'""(0), and I,.(s) is the Laplace transform of I,(z). The Laplace transform in
equation (A4) involving py/p as a multiplier is the contribution of the perturbation pressure on the lower surface of the panel.
Unfortunately, this transform does not appear to be obtainable here where the deflection Z is unknown. In the body of the
report the effect of including the air below the panel is found to be moderate at a Mach number of 1.3 and reasons are given
why this effect is expected to be even smaller at the higher Mach numbers investigated. In view of these facts and in view of
the difficulty of handling the lower-surface term in equation (A4), this term will be omitted in the rest of this appendix—that
is, treated as if p, were zero.

Equation (A4) can therefore be reduced to
(et —882— 1)+ e(s+12k) T (8)) Z(8)=a(s*z,+ 825+ 25)—52 (A5)

where e=1/4k*:8 and z, has been dropped because it is zero for the present boundary-value problems. Thus the integro-
differential equation (A1) has been reduced to the algebraic equation (A5).
Now by means of pair 11, p. 294, and pair 55, p. 298, of reference 17 there ig obtained

1/2

o= e+or+() | (46)
Therefore, from equation (A5), after some algebraic manipulation

7(s)=%§(§+%’(% ) (A7)

where

Qo)=(es'—os'—17 | G +ap+(7) |- eo+iziy
B(s)=(cst—857—1) [(s+w)2+(z%>z:| [e(s%2+ 824+ 25)—b2]

N()=— e(s-+i2k)* I:(s-i- f@)%(%)’] 8321823+ 23)— 2]

In polynomial form the quantities @, M, and N are

10
Q(8)=;?3_oqfsl°" ) (A8)
8 7 [
M=z m, Ve "+ 2> \m, P84 2,5 ym, Dss~7 (A9)
r=0 r=0 r=0

[i] [ 4
N@E)=22 1,08+ 2> P&+ 2> n, Pt~ (A10)
r=0 rap

r=0
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The coefficients of the various series are given in the following table:

r % 4 m,m m,® m,® n, W n,® n,®

0 o o o o —ae —ae —ac

1 2803 2802 203 a0 — i%bae (1+%,) —i%ae(l-l—%’) —mae(1+ %,)
| e BD) [ o) (eeB)| e Be (f) |l (o) oo
3 —idGas i — i2ad —i%aas | 2] 38 (1+ L) +2a 85 e B2 e 5
1| p2ataZ | pat2afs | —atw Bl | —atasBX |- 85 M’“(“'Mz)] ~ae B2 —ae 8%
5 126 (5 —202) 26(—a) — %G —i25a —idge ‘9]:{_4 0

8|2s—a—@—20 5| s-r-a) B8 | 55 o« 25 2 22

7 (408 —8kte) 1258 0 |

8| 1-2s 2 +oame — &5

9 1(26+3213¢)

—(2% 16 )
10 Sp Fieke

The exact inverse transform of equation (A7) requires the determination of the roots of @(s) (eq. (A8)). Since Q(s) isa
tenth-order polynomial, its roots can be solved only approximately for specific values of the coefficients ¢.. An alternative
procedure is to expand the quantity [Q(s)]~* in a Maclaurin’s series (a procedure used in ref. 18), with the result that it may

be expressed in the form
1

17T,
Q(_S)-=Eﬁ§ 8" (All)

where
QOT o—1

10
0T1;= _ZIQrTn—r (ng 1)
Tea

and T with a negative subsecript is to be interpreted as zero.
‘When the series expansion for [@(s)]™* (eq. (A11)) is substntuted into equation (A7), the transform Z(s) becomes the sum

of infinite series with terms of the two distinct types
A

"
and

Z Lo

where m is & positive integer. The inverse Laplace transform of the first type of term is (see pair 3, p. 295 of ref. 17)

Agm?
I- { 8,,} e (A12)
and of the second is (see pair 7, p. 294 of ref. 17)

-l{g f,.(s)}=(m%l), [(e—prwa (A18)

where I, (z) is defined following equation (A2).
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Upon substituting equations (A9), (A10), and (Al11) into equation (A7) and using equations (A12) and (A13) to obtain
the inverse transform of the resultant expression, Z(z) is given by

Z(@)=h ()21} ha(x) 22+ hs(x) 25 (A14)
where

.mr(l)xn+r+l ™ [ nnr wbr
W= 2 T R e o e Lo

@) pntrt+3
ho- 5 5 B s B Tl (Moo
nmr(:!)zn+r+3 w 4 Tnnr(ﬂ

MO~ 2 T T B e

nol r=0

[Te—errnoa

In deriving equation (A14) only one boundary condition—namely, zy=2Z(0)=0—has been used thus far. In order to
obtain the solution for & plate restrained in a particular manner, it is necessary to impose three additional boundary conditions.
These additional conditions for the plate with pinned and clamped edges are given in equations (3) and (4), respectively.
By their use, one of the terms of equation (A14) is eliminated and two homogeneous equations in the two remaining unknown
z¢s are obtained. The borderline condition of harmonic oscillation, or the point at which flutter occurs, is obtained by setting
the determinant, of the coefficients of these equations equal to zero. Thus, the flutter determinant for the pinned-edge plate is

(1) hs(1)

= (A15)
h7Q)  RT(D)
and for the clamped-edge plate is
k(1) hs(1)
= (A16)
‘ h'(1)  RS(Q)
where the determinant elements are given by
nmr nnf n+r
O=5 2 G B e J, 0RO
77 umf n'nr nd-r
= Byl Bt B B [la-orenon
.m, o 5 n'nr ntr
b0=3 3 ot S D ey J, O o
71\ nmr =2 & n'nr Atr
WO B e B S B et J, 4L o
= 3 T s Tm® (s )
TS =S ) S = () Jo “
’ nmr unr ntrdd
=3 35 Gt B et J, 0O @
177 nmr ﬂnf ntr
W O=53 33 G B G Ju OO0
Each of the preceding elements contains integrals of the form
Losa= [ a—erLod @1
which can be written in terms of the Schwarz functions A (M, @) (see ref. 9 or eq. (24)) as
(—1)m! (A18)

m(M—) E(m )\)l)\"fth’
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where

hi= | er0a

Examination of the series in the elements of equations (A15) and (A16) reveals that A of equation (A18) ranges at least
between 0 and n+7 and at most between 0 and n+49. In order to obtain accuracy to four significant figures, at least the
first eight terms of each series and the consequent ranging of X between 0 and 16 are probably required. Inasmuch as the
Schwarz functions f, have been tabulated for only the first few values of A, the use of equation (A18) would require the deter-
mination of a rather extensive series of f,’s. An alternative and perhaps more efficient procedure would be to evaluate
directly the integrals I, as given in equation (A17) rather than to resort to the expanded form in equation (A18).

Attention will now be given to the solution of the determinantal equations (A15) and (A16). A method of solution for
parameters that were sought in the generalized-coordinate approach of the body of the report (that is, 1/u and
2k, =2k (R.P.2)"?) will be outlined here.

The elements of equations (A15) and (A16) are complex functions of the five parameters M, k, @ (with g=0), f, and 1/u.
The most difficult parts of these elements to evaluate are the integrals generically represented by I, in equation (A17), which
are functions of the parameters M and k. Therefore, a convenient method of solution would be to fix the parameters M
and % and preferably f and vary the remaining parameters 2 and 1/p in the left-hand side (hereinafter referred to as A) of
equation (A15) or of equation (A16). By varying @ and 1/u over sufficiently broad ranges, an indefinitely large number of
combinations of € and 1/ which cause A to vanish could be found. Each combination would define a point on separate sta-
bility boundaries, such as those shown in figure 3. Each boundary could then be determined as completely as desired by
varying k over a sufficient range and repeating for each chosen value of % the process of finding combinations of @ and 1/u
which cause A to vanish.

As can be surmised, the numerical calculations would be extremely lengthy even apart from two other questions which
arise; namely, which is the stable side of each boundary, and has the critical boundary been found which separates stable
and unstable regions and thereby defines the thinnest panel that is stable? In the present report, therefore, the stability
boundaries shown in figures 2 to 9 were calculated exclusively on the basis of the generalized-coordinate or modal approach.
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APPENDIX B

VELOCITY POTENTIAL ¢; AND RELATED INTEGRAL PF,.

VELOCITY POTENTIAL ¢,

The velocity potential ¢; given in equation (9), which ap-
plies to the lower surface of the two-dimensional panel
shown in figure 1, will now be derived. The system consists
of o panel of width ¢, which is part of an otherwise rigid
gurface of infinite extent, oscillating harmonically with
stationary air extending to infinity below. Thus, over

the panel the normal velocity on the lower surface is

10,=10Z(x)e***, while over the rest of the plane w,=0.
According to reference 10 the solution to this problem can

be obtained from
[

where w; is the given normal velocity at the element of area
dS of the plane and ¢ is the velocity potential at a point P
which is at a distance » from dS. From equation (B1) the
velocity potential at the surface of the panel may be obtained,
in terms of the coordinates of figure 1, as

(BI)

1/(1_5—33
= (2w 4 R el

zwe

by=— (B2)

Upon making the substitution y=|[z—¢| cosh 6, the integral
with respect to ¥ in equation (B2) may be written in the

form
~2 w’(z—E)’-H’

N

By means of equation (11) on page 180 of reference 19,
equation (B3) becomes

Iz—b)= f i;l:—fl cosh @ & (B3)

Ia—y=—irHe (22— ) (B4)
Substitution of equation (B4) into equation (B2) yields
fwt ]
~e = (oo (2e—t) @)
0 a

If the coordinates z and £ are nondimensionalized by dividing
by the panel ctord ¢, the form for ¢; given in equation (9)
is obtained.

INTEGRAL I?u

The third term on the right-hand side of equation (22),
namely,

Puo=21 [ 2,0 log. GMlz—thas  (Bo)

containsg the singularity of the Hankel function in equation
(20).

As a first step in the evaluation of the improper integral
in equation (B6), let

f=5(1—cos )

(B7)
a:=% (1—cosy)
and
Zo®)= 33 sin m¢ (BS)
where

Sw=2 [ 2, sin mg dx
TJo
In terms of equations (B7) and (BS), equation (B6) becomes

Po=2 5 1w) (B9)

where
IW)= il S Or sin ¢ sin m¢ log, (kiTM |cos ¥ —cos ,bl) dt (B10)

Taking the derivative of equation (B10) with respect to
¥ and making use of reference 20 to evaluate the resulting
improper integrals yields

al 1 cos (m—1)¢—cos (m+1)¢ .
b 2m=-1 f cos {—cos ¢ sin v df
=5 2,Sn [sin(m—1)¢~sin (m+1)y] (B11)

Integration of equation (B11) gives

1 +1 1
5310082!#+§'2S l:cos7(nm_|_1 W_ cos(m )n,lz:l}_l_K
(B12)

Ip)y=3

The integration constant K in equation (B12) is determined
by setting ¢ equal to /2 in equations (B10) and (B12) and
equating the two resultant expressions. By so doing, it is
found that

kM
° 4

K=g S, log (B13)

By means of equations (B12) and (B13), equation (B9)
becomes

(a:)—p° 1{(1 Ze kfll L cos 21,!/) S+

cos (m-+1)¢ cos (m 1)1,!1
m-2 I: m+1 ]} (B14)
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The mode shapes Z, in equation (B6) are now approxi-
mated by the finite sine series

Zu)= e sin 73 B15)

The constants S, in equation (B14) are obtained from the
expression following equation (B8), with the result that
equation (B14) can be written as

1=°',,(a: ol ﬁf,(z)s,

?Zrnl

(B16)

where

Ly(z)=log, %—l—; cos 2¢
f,(x)=7% cos (r—I—l)x,b—’él cos (r—1)¢y r=2)
and, as in equation (B7),

9:=-j;: (1—cos )

The form given in equation (B16) was used to obtain equa-
tion (28). Of interest is the fact that only I, depends on k
and M. The term P, is therefore comparatively simple to
include in equation (22).

The coefficients s, in equations (B15) and (B16) for the first
four modes of the plate with clamped edges are given in the
following table:

Mode 1 Mode 2 Mode 3 Modo 4
L 0. 66613 0 —0. 32017 0
] 0 0. 64119 0 0, 40890
o —0, 20503 0 —0. 50867 0
N 0 —0, 46861 0 0.27852
5 0. 039764 0 0.61134 0
£ 0 0. 098515 0 —0. 61624
7 0.001315 0 —0.18746 0
n 0 —0. 003411 0 0. 28500
1.3 Q. 000396 0 0.021697 0
310 0 0. 002858 0 —0, 028044

The coefficients 8, for the second and fourth modes were
obtained by forcing the slope of Z,, as given by equation
(B15), to be zero at y=0 (that is, at z=0). A similar table
can be easily calculated for the pinned-edge plate.
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